Preliminary communication

Preparation, isolation and chemical reactivity of the $\alpha-\mathrm{CF}_{3}$-propargylium ion stabilized by a heterobimetallic [Co-Mo] cluster

M.A. Kondratenko ${ }^{\text {a }}$, B. Malézieux ${ }^{\text {a }}$, M. Gruselle ${ }^{\text {a,* }}$, D. Bonnet-Delpon ${ }^{\text {b }}$, J.P. Bégué ${ }^{\text {b }}$
${ }^{\text {a }}$ Laboratoire de Chimie Organométallique, URA 403, Ecole Nationale Supérieure de Chimie, 11 rue Pierre et Marie Curie, 75231 Paris-cedex, France
${ }^{\text {b }}$ BIOCIS URA 1843, Faculté de Pharmacie, 5 rue Jean Baptiste Clément, 92296 Chatenay-Malabry, France

Received 25 May 1994

Abstract

The synthesis of a diastereomeric $\alpha-\mathrm{CF}_{3}$ derivative of a propargylic alcohol complexed in a hetero-bimetallic [Co-Mo] cluster is described. By the action of HBF_{4} on the alcohol, one variety of complexed propargylium ion is formed.

Keywords: Cobalt; Molybdenum; Trifluoropropargylic alcohol derivative; Nucleophilic attack; Binuclear complex

Despite the potent electron-withdrawing character of the trifluoromethyl group, numerous studies have now firmly established that $\alpha-\mathrm{CF}_{3}$-substituted carbenium ions are stable [1]. A variety of these cations have been generated or postulated as intermediates in synthetic and mechanistic studies, in particular when an adjacent electron-donating group is present. In some cases they are sufficiently stabilized by charge delocalization to be observable by NMR spectroscopy [2] or in the gas phase [3].

Alkyne bimetallic clusters are efficient stabilizers of carbenium ions and prevent isomerization of triple bonds [4]. In this context we report the isolation and preliminary reactivity results of a CF_{3}-substituted propargylium ion stabilized by a metallic cluster.

Initially, the dicobalt hexacarbonyl complex 1 of propargylic alcohol 2 was prepared in 55% yield [5], as shown in Scheme 1.

When the complexed alcohol 1 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution was treated with $\mathrm{HBF}_{4} / \mathrm{Et}_{2} \mathrm{O}$ a carbenium ion was formed, as indicated by the resonance shift of the CF_{3} group in the ${ }^{19} \mathrm{~F}$-NMR spectrum (from -83.9 to -93.4 ppm). This cation could not be isolated.

Replacing one $\mathrm{Co}(\mathrm{CO})_{3}$ moiety by the isolobal $\mathrm{MoCp}(\mathrm{CO})_{2}$ group is known to provide a better stabilization of the propargylium ion [6]. We therefore

[^0]prepared the [Co-Mo] cluster of the alcohol 2 by modifying a procedure described by D'Agostino et al. [7]. The exchange of the $\mathrm{Co}(\mathrm{CO})_{3}$ vertex by $\mathrm{MoCp}(\mathrm{CO})_{2}$ in complex 1 was performed using $\mathrm{Na}\left[\mathrm{MoCp}(\mathrm{CO})_{3}\right]$ as a nucleophilic reagent [8], as shown in Scheme 2.

The diastereomeric alcohols 3a and 3b were obtained in a $1: 1$ ratio in 94% yield and separated by chromatography on silica plates $\left(\mathrm{Et}_{2} \mathrm{O}\right.$: pentane, $\left.1: 6\right)$ [9]. The protonation of $\mathbf{3 a}$ and $\mathbf{3 b}$ in an ethereal solution by $\mathrm{HBF}_{4} / \mathrm{Et}_{2} \mathrm{O}$ resulted in the formation of a solid product identified as the carbenium ion salt 4 [10].

Some preliminary experiments on the reactivity of the cation 4 towards nucleophiles and/or bases have been performed and are summarized in Scheme 3.

The action of dimethylamine and/or sodium methanethiolate afforded the ethylenic compound 5 in 40% yield. With hydride reagents $\left(\mathrm{NaBH}_{4}\right.$ or $\mathrm{NaBH}_{3} \mathrm{CN}$) a mixture of elimination and reduction products 5 and 6 was obtained, in 1:1 ratio in 50% yield [11]. In the presence of water, the carbenium ion salt 4 leads exclusively and quantitatively to the alcohols $\mathbf{3 a}$ and $\mathbf{3 b}$ in $1: 1$ ratio. This nucleophilic addition, rather than elimination, of water is not observed with bimetallic complexes of non-fluorinated tertiary carbenium ions [4d].

In conclusion, through the interaction of a heterobimetallic cluster with a compound containing an acetylenic bond, an $\alpha-\mathrm{CF}_{3}$-substituted carbenium ion

Scheme 1.

1

3a, 3b

Scheme 2.
3a or 3b
$\mathrm{HBF}_{4} / \mathrm{Et}_{2} \mathrm{O}$
$\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{CO}\right)_{3} \mathrm{Co}$

5

$3 a+3 b$
$5+$

6a, 6b

Scheme 3.
complex has been isolated for the first time. This allows the previously difficult nucleophilic substitution of $\alpha-\mathrm{CF}_{3}$ alcohols to be easily undertaken.

A study is in progress of other fluorinated $\alpha-\mathrm{CF}_{3}{ }^{-}$ carbenium ions, especially secondary ions.

Acknowledgement

The authors thank CNRS for financial support.

References

[1] (a) T.T. Tidwell, Adv. Carbocation Chem., 1 (1989) 1; (b) A.D. Allen, R. Krishnamurti, G.K.S. Prakash and T.T. Tidwell, J. Amer. Chem. Soc., 112 (1990) 1291; (c) A.D. Allen, V.N. Kanagasabapathy and T.T. Tidwell, J. Amer. Chem. Soc., 108 (1986) 3470; (d) A.D. Allen, I.C. Ambidge, C. Che, H. Michael, R.J. Muir and T.T. Tidwell, J. Amer. Chem. Soc., 105 (1983) 2343; (e) A.D. Allen, F. Shahidi and T.T. Tidwell, J. Amer. Chem. Soc., 104 (1982) 2516; (f) D. Bonnet-Delpon, C. Cambillau, M. Char-pentier-Morize, R. Jacquot, D. Mesureur and M. Ourevitch, J. Org. Chem., 53 (1988) 749; (g) X. Creary, Chem. Rev. 91 (1991) 1626; (h) A.D. Allen; J.M. Kwong-Chip; W.C. Lin, P. Nguyen and T.T. Tidwell, Can. J. Chem., 68 (1990) 1709.
[2] G.A. Olah, G.K.S. Prakash, M. Arvanaghi, V.V. Krishnamurthy and S.C. Narang, J. Amer. Chem. Soc., 106 (1984) 2378.
[3] T. Sürig, H.Fr. Grützmacher, J.P. Bégué and D. Bonnet-Delpon, Org. Mass. Spectrum, 28 (1993) 254.
[4] (a) K.M. Nicholas, Acc. Chem. Res., 20 (1987) 207; (b) A. Meyer, D.J. Cabe and M.D. Curtis, Organometallics, 6 (1987) 1491; (c) S.L. Schreiber, M.T. Klimas and T. Sammakia, J. Amer. Chem. Soc., 109 (1987) 5749; (d) M. Gruselle, C. Cordier, M. Salmain, H. El Amouri, C. Guerin, J. Vaissermann and G. Jaouen, Organometallics, 9 (1990) 2993; (e) C. Cordier, M. Gruselle, J. Vaissermann, L.L. Troitskaya, V.I. Bakhmutov, V.I. Sokolov and G. Jaouen, Organometallics, 11 (1992) 3825.
[5] The ethyl magnesium bromide was obtained starting from 0.24 g of $\mathrm{Mg}\left(10^{-2} \mathrm{~mol}\right)$ and 0.75 ml of bromoethane ($\left.10^{-2} \mathrm{~mol}\right) .0 .96$ $\mathrm{g}\left(10^{-2} \mathrm{~mol}\right)$ of 1-heptyne in 20 ml of ether was added dropwise at room temperature and then heated under reflux for 1 h . After cooling to $0^{\circ} \mathrm{C}, 1.12 \mathrm{~g}\left(10^{-2} \mathrm{~mol}\right)$ of trifluoromethylketone in 10 ml of ether was added dropwise and the mixture was stirred 1 h . The reaction mixture was poured onto ice and neutralized. After classical workup 1.12 g of the crude product 2 was recovered.
$0.416 \mathrm{~g}\left(2 \times 10^{-3} \mathrm{~mol}\right)$ of 2 in 10 ml of ether was added under argon to an ethereal solution of $0.684 \mathrm{~g}\left(2 \times 10^{-3} \mathrm{~mol}\right)$ of $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$. After 1 h the reaction was complete and the crude product was flash chromatographed on silica gel (eluent: pen-
tane/ether $1: 1$). 0.55 g of a red-brown oil 1 was recovered in 55% yield.

1, ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 2.76(2 \mathrm{H}, \mathrm{m}) ; 2.30(1 \mathrm{H}, \mathrm{s}) ; 1.70(3 \mathrm{H}, \mathrm{s})$. $1.65-1.35(6 \mathrm{H}, \mathrm{m}) ; 0.93(3 \mathrm{H}, \mathrm{t} J=7.5 \mathrm{~Hz}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $198.7,125.5,\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=280.7 \mathrm{~Hz}\right), 100.8,92.8,75.0,\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=\right.$ 33.02 Hz , 32.63, 31.29, 31.23, 24.61, 20.06, 13.48. ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-83.9$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \mathrm{cm}^{-1}: 2027.8,2056.2,2094.5$. Anal. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{Co}_{2} \mathrm{~F}_{3} \mathrm{O}_{7}$: Calcd. C 38.87; H 3.04. Found: C 38.82; H 2.99%.
[6] (a) M.F. D'Agostino, M. Mlekuz and J.M. McGlinchey, J. Organomet. Chem., 345 (1988) 371; (b) M.F. D’Agostino, C.S. Frampton and J.M. McGlinchey, J. Organomet. Chem. 394 (1990) 145; (c) M. Gruselle, H. El Haffa, M. Nikolski, G. Jaouen, J. Vaissermann, Lijuan-Li and J.M. McGlinchey. Organometallics, 12 (1993) 4917.
[7] M.F. D'Agostino, C.S. Frampton and J.M. McGlinchey, Organometallics, 9 (1990) 2972.
[8] The methodology used by D'Agostino et al. was modified using $\mathrm{Na} / \mathrm{Hg}$ as a reducing agent (H. El Haffa, Thesis, University Pierre et Marie Curie, Paris, 1992).
[9] For 3a (the less polar isomer), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 5.47(5 \mathrm{H}, \mathrm{s})$; $2.95(2 \mathrm{H}, \mathrm{m}) ; 2.13(1 \mathrm{H}, \mathrm{s}) ; 1.82(2 \mathrm{H}, \mathrm{m}) ; 1.59\left(3 \mathrm{H}, \mathrm{q},{ }^{4} J_{\mathrm{H}-\mathrm{F}}=1\right.$ $\mathrm{Hz}) ; 1.40(4 \mathrm{H}, \mathrm{m}) ; 0.91(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: 203.48; $126.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=280.3 \mathrm{~Hz}\right) ; 105.92 ; 91.88 ; 90.24 ; 77.6(\mathrm{q}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=31.4 \mathrm{~Hz}\right) ; 34.87 ; 31.87 ; 31.10 ; 24.87 ; 22.24 ; 13.80 .{ }^{19} \mathrm{~F}-$ NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): -85.0. IR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \mathrm{cm}^{-1}: 1904.3 ; 1939.8$; 1981.8; 2000.0; 2049.2; 2071.1. Anal. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{CoF}_{3} \mathrm{MoO}$; Calcd. C 42.25; H 3.52. Found: C 42.39; H 3.65%.

For 3b (the most polar isomer), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 5.47(5 \mathrm{H}$, $\mathrm{s}) ; 2.97(2 \mathrm{H}, \mathrm{m}) ; 2.19(1 \mathrm{H}, \mathrm{s}) ; 1.70(2 \mathrm{H}, \mathrm{m}) ; 1.53(3 \mathrm{H}, \mathrm{q}$, $\left.{ }^{4} J_{\mathrm{H}-\mathrm{F}}=1 \mathrm{~Hz}\right) ; 1.40(4 \mathrm{H}, \mathrm{m}) ; 0.90(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 203.6 ; 125.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=276.8 \mathrm{~Hz}\right) ; 106.38 ; 92.26$; $90.26 ; 77.10$ (obscured by CDCl_{3} peaks) 34.75; 31.90; 31.06; 24.83; 22.25; 13.80. ${ }^{19}$ F-NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: -85.3. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\mathrm{cm}^{-1}: 1938.6 ; 1984.9 ; 2000.9 ; 2051.2$. Anal. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{CoF}_{3}$. MoO_{6} : Calcd. C 42.25; H 3.52. Found: C 43.29; H 3.77.
[10] To an ethereal solution of $0.06 \mathrm{~g}(0.1 \mathrm{mmol})$ of $\mathbf{3 a}$ or $\mathbf{3 b}$, at room temperature, was added 0.2 ml of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$, leading to the formation of a non-soluble red-brown oil, turning rapidly to a fine yellow-brown powder. After several washes with ether, the powder was dried under vacuum. Yield $78 \%(0.05 \mathrm{~g})$.

For 4, ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 5.86(5 \mathrm{H}, \mathrm{s}) ; 2.97(2 \mathrm{H}, \mathrm{m}) ; 2.01$ ($3 \mathrm{H}, \mathrm{s}$) ; $1.92(1 \mathrm{H}, \mathrm{m}) ; 1.59(1 \mathrm{H}, \mathrm{m}) ; 1.39(4 \mathrm{H}, \mathrm{m}) ; 0.91(3 \mathrm{H}, \mathrm{s})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): 216.51 ; 210.01 ; 199.21 ; 126.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ 276.7 Hz) $108.89 ; 92.36 ; 36.75 ; 32.93 ; 31.59 ; 22.51 ; 21.70 ; 13.90$. ${ }^{19} \mathrm{~F}$-NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right):-101.74$ (s). IR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$) 1943.6; 1988.9; 2005.0; 2053.7; 2063.2; 2102.3. Anal. For $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BCoF}_{7} \mathrm{MoO}_{5}$: Calcd. C 37.62; H 2.98 . Found: C 36.56; H 3.01%.
[11] For $5,{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 5.81(1 \mathrm{H}, \mathrm{s}) ; 5.42(1 \mathrm{H}, \mathrm{s}) ; 5.30(5 \mathrm{H}, \mathrm{s})$; $2.92(2 \mathrm{H}, \mathrm{m}) ; 1.70-1.20(6 \mathrm{H}, \mathrm{m}) ; 0.91(3 \mathrm{H}, \mathrm{t})$.

For $\mathbf{6 a}, \mathbf{6 b},{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 5.40(5 \mathrm{H}, \mathbf{s}) ; 3.50(1 \mathrm{H}, \mathbf{m}) ; 2.92$ $(2 \mathrm{H}, \mathrm{m}) ; 1.70-1.20(6 \mathrm{H}, \mathrm{m}) ; 1.34(3 \mathrm{H}, \mathrm{d})$ and $5.38(5 \mathrm{H}, \mathrm{s}), 3.50$ $(1 \mathrm{H}, \mathrm{m}) ; 2.92(2 \mathrm{H}, \mathrm{m}) ; 1.70-1.20(6 \mathrm{H}, \mathrm{m}) 1.27(3 \mathrm{H}, \mathrm{d}) 0.92(3 \mathrm{H}$, t).

[^0]: * Corresponding author.

